Retail & E-Commerce

Real-Time Personalization Engine for Omnichannel Retail

Global Fashion Retailer

Challenge

A fashion retailer with 800+ stores and 50M+ online customers needed unified personalization across web, mobile, in-store, and email to combat declining conversion rates and increasing customer acquisition costs in a competitive market.

Outcome

Deployed real-time personalization engine processing 2.5B events daily, increasing conversion rates by 47%, AOV by 23%, and customer lifetime value by 31%. System delivers personalized experiences in <50ms across all touchpoints.

Services Delivered

AI & Data Science
Product Engineering
Cloud & DevOps
47%
Conversion rate increase
23%
Average order value increase
31%
Customer LTV increase

The Challenge

The retailer faced critical personalization gaps:

  • Siloed data - Web, mobile, in-store, and email systems disconnected
  • Generic experiences - Same content shown to all customers
  • Slow time-to-market - 6+ weeks to deploy new personalization rules
  • Scale challenges - 50M customers, 250K SKUs, real-time requirements
  • Cold start problem - 40% of traffic from new/anonymous users
  • Privacy constraints - GDPR/CCPA compliance with personalization
  • Attribution complexity - Multi-touch customer journeys across channels

Our Solution

Phase 1: Data Unification Platform (Weeks 1-8)

Built Customer Data Platform (CDP):

Data sources integrated:

  • E-commerce platform (Shopify Plus)
  • POS systems across 800 stores
  • Mobile app events
  • Email engagement (Klaviyo)
  • Customer service interactions (Zendesk)
  • Social media engagement
  • Loyalty program data

Unified customer profile:

{
  "customer_id": "uuid",
  "identity_graph": {
    "email": ["primary@email.com", "secondary@email.com"],
    "phone": ["+1234567890"],
    "device_ids": ["web_id", "mobile_id"],
    "loyalty_id": "L12345"
  },
  "demographics": {
    "age_range": "25-34",
    "gender": "F",
    "location": "New York, NY"
  },
  "behavior": {
    "lifetime_value": 2847.50,
    "order_count": 14,
    "avg_order_value": 203.39,
    "favorite_categories": ["dresses", "accessories"],
    "size_profile": {"tops": "M", "bottoms": "8"},
    "brand_affinity": ["brand_a", "brand_c"],
    "price_sensitivity": "medium",
    "discount_affinity": 0.72
  },
  "real_time_context": {
    "current_session_intent": "browsing_dresses",
    "cart_items": [...],
    "recent_views": [...],
    "device": "mobile_ios",
    "location": "in_store_manhattan"
  }
}

Data pipeline:

  • Event streaming: Kafka + Kafka Streams (2.5B events/day)
  • Identity resolution: Probabilistic + deterministic matching
  • Profile store: DynamoDB for low-latency reads (<10ms)
  • Data lake: S3 + Athena for analytics
  • CDC: Debezium for database change capture

Phase 2: ML Recommendation Engine (Weeks 9-18)

Built multi-model recommendation system:

Model 1: Collaborative Filtering (70% weight)

Matrix factorization for user-item interactions:

  • Architecture: Neural Collaborative Filtering (NCF)
  • Embeddings: 128-dim user and item vectors
  • Training data: 500M historical interactions
  • Update frequency: Daily batch + real-time incremental
class CollaborativeFilteringModel:
    def __init__(self, num_users=50M, num_items=250K):
        self.user_embedding = nn.Embedding(num_users, 128)
        self.item_embedding = nn.Embedding(num_items, 128)
        self.mlp = nn.Sequential(
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 1)
        )
    
    def forward(self, user_id, item_id):
        user_vec = self.user_embedding(user_id)
        item_vec = self.item_embedding(item_id)
        concat = torch.cat([user_vec, item_vec], dim=1)
        score = self.mlp(concat)
        return score

Model 2: Content-Based Filtering (20% weight)

Item similarity using product attributes:

  • Features: Category, brand, color, style, price, season
  • Architecture: Two-tower neural network
  • Purpose: Handle cold-start items

Model 3: Contextual Bandits (10% weight)

Real-time exploration-exploitation:

  • Algorithm: Thompson Sampling
  • Context: Time, device, location, session intent
  • Purpose: Discover new preferences and trends

Model 4: Session-Based RNN

Sequential pattern modeling:

  • Architecture: GRU with attention mechanism
  • Window: Last 20 interactions in session
  • Purpose: Capture in-session intent evolution

Phase 3: Real-Time Personalization API (Weeks 19-28)

Built high-performance serving infrastructure:

API Requirements:

  • Latency: <50ms p99 for recommendation requests
  • Throughput: 50K requests/second peak
  • Availability: 99.99% uptime
  • Freshness: Incorporate actions within 100ms

Architecture:

┌─────────────────────────────────────────────────────┐
│                  API Gateway (Kong)                  │
└─────────────────────────────────────────────────────┘
                        ↓
┌─────────────────────────────────────────────────────┐
│           Feature Store (Redis Cluster)             │
│  - User profiles (hot cache)                        │
│  - Item metadata                                    │
│  - Real-time aggregates                             │
└─────────────────────────────────────────────────────┘
                        ↓
┌─────────────────────────────────────────────────────┐
│        Recommendation Service (Golang + Python)      │
│  - Model inference (TorchServe)                     │
│  - Business rules engine                            │
│  - A/B testing framework                            │
│  - Explainability service                           │
└─────────────────────────────────────────────────────┘
                        ↓
┌─────────────────────────────────────────────────────┐
│              Response Optimization                   │
│  - Diversity re-ranking                             │
│  - Inventory constraints                            │
│  - Personalized pricing                             │
│  - Multi-objective optimization                     │
└─────────────────────────────────────────────────────┘

Caching strategy:

  • L1 Cache: In-memory LRU (hot users) - 10M users cached
  • L2 Cache: Redis (warm users) - 50M users
  • L3 Storage: DynamoDB (all users) - fallback

Phase 4: Omnichannel Experiences (Weeks 29-38)

Deployed personalization across all touchpoints:

Web/Mobile E-Commerce

  • Homepage: Personalized hero banners and product grids
  • Category pages: Personalized sorting and filtering
  • Search: Personalized search ranking
  • Product pages: "Complete the look" recommendations
  • Cart: Add-ons and cross-sells
  • Post-purchase: Thank you page recommendations

In-Store Experience

  • Sales associate app: Customer profile and recommendations
  • Smart mirrors: Virtual try-on with personalized suggestions
  • Clienteling: Targeted outreach for VIP customers
  • Endless aisle: Cross-channel inventory recommendations

Email & Push Notifications

  • Abandoned cart: Personalized recovery emails
  • Browse abandonment: Retargeting campaigns
  • Back-in-stock: Personalized alerts
  • New arrivals: Curated for each customer
  • Win-back: Re-engagement campaigns

Loyalty Program

  • Personalized rewards: Offers based on preferences
  • Gamification: Challenges tailored to behavior
  • VIP experiences: Exclusive access based on LTV

Technical Implementation

Real-Time Feature Engineering

class FeatureStore:
    def get_user_features(self, user_id, context):
        """
        Fetch and compute features in <10ms
        """
        # Fetch from Redis (cached)
        profile = self.redis.hgetall(f"user:{user_id}")
        
        # Real-time aggregates
        recent_views = self.redis.lrange(f"views:{user_id}", 0, 19)
        cart_items = self.redis.smembers(f"cart:{user_id}")
        
        # Compute derived features
        features = {
            # Profile features
            'ltv': float(profile.get('ltv', 0)),
            'order_count': int(profile.get('order_count', 0)),
            'avg_order_value': float(profile.get('aov', 0)),
            
            # Behavioral features
            'favorite_category': profile.get('fav_category', 'unknown'),
            'price_sensitivity': float(profile.get('price_sensitivity', 0.5)),
            
            # Real-time features
            'session_views': len(recent_views),
            'cart_value': self.calculate_cart_value(cart_items),
            'time_since_last_purchase': self.get_recency(user_id),
            
            # Context features
            'device': context.get('device', 'web'),
            'location': context.get('location'),
            'hour_of_day': context.get('hour'),
            'day_of_week': context.get('day_of_week'),
        }
        
        return features

Multi-Objective Optimization

Balance multiple business objectives:

class RecommendationOptimizer:
    def rank_items(self, user_id, candidate_items, objectives):
        """
        Multi-objective ranking:
        - Relevance (predicted CTR)
        - Revenue (expected value)
        - Diversity (category/brand spread)
        - Inventory (clearance priority)
        - Margin (profitability)
        """
        scores = []
        for item in candidate_items:
            relevance = self.model.predict_ctr(user_id, item)
            revenue = self.predict_revenue(user_id, item)
            margin = item.margin_percent
            clearance_boost = 1.5 if item.is_clearance else 1.0
            
            # Weighted combination
            score = (
                0.50 * relevance +
                0.25 * revenue / 1000 +  # Normalize to 0-1
                0.15 * margin / 100 +
                0.10 * clearance_boost
            )
            scores.append((item, score))
        
        # Sort by score
        ranked = sorted(scores, key=lambda x: x[1], reverse=True)
        
        # Apply diversity constraints
        final_recs = self.diversify(ranked, max_per_category=3)
        
        return final_recs[:20]  # Top 20

A/B Testing Framework

Rigorous experimentation platform:

class ABTestingFramework:
    def get_variant(self, user_id, experiment_id):
        """
        Consistent variant assignment with traffic allocation
        """
        # Hash user ID for deterministic assignment
        hash_val = hashlib.md5(f"{user_id}:{experiment_id}".encode()).hexdigest()
        bucket = int(hash_val, 16) % 100
        
        # Fetch experiment config
        exp = self.get_experiment(experiment_id)
        
        # Assign to variant
        cumulative = 0
        for variant in exp.variants:
            cumulative += variant.traffic_percent
            if bucket < cumulative:
                return variant.id
        
        return 'control'
    
    def track_event(self, user_id, experiment_id, variant, event_type, value):
        """
        Track experiment metrics
        """
        event = {
            'experiment_id': experiment_id,
            'user_id': user_id,
            'variant': variant,
            'event_type': event_type,  # view, click, add_to_cart, purchase
            'value': value,
            'timestamp': time.time()
        }
        self.kafka_producer.send('experiment_events', event)

Results

Conversion & Revenue

  • 47% increase in conversion rate (2.3% → 3.4%)
  • 23% increase in average order value ($203 → $250)
  • $127M additional annual revenue attributed to personalization
  • 18% reduction in cart abandonment rate

Customer Engagement

  • 31% increase in customer lifetime value
  • 2.4x increase in repeat purchase rate
  • 55% increase in email click-through rates
  • 67% increase in mobile app engagement

Operational Efficiency

  • 73% reduction in manual campaign creation time
  • $18M savings from reduced discounting (targeted offers)
  • 42% improvement in inventory turnover
  • 89% reduction in overstock markdowns

Technical Performance

  • 47ms p99 latency for recommendations
  • 99.99% uptime over 12 months
  • 2.5B events/day processed in real-time
  • <100ms from action to profile update

Advanced Features

1. Visual Search & Recommendations

  • Image recognition: Find similar items from photos
  • Style transfer: "More like this" visual recommendations
  • Virtual try-on: AR-powered outfit building

2. Size & Fit Recommendations

  • ML-based sizing: Reduce returns by 38%
  • Body shape analysis: Personalized fit suggestions
  • Historical return patterns: Proactive size recommendations

3. Dynamic Pricing

  • Personalized promotions: Right discount for right customer
  • Willingness-to-pay estimation: Margin optimization
  • Competitive monitoring: Real-time price adjustments

4. Fraud Detection Integration

  • Behavior anomaly detection: Flag suspicious purchases
  • Account takeover prevention: Unusual pattern alerts
  • Returns abuse detection: Serial returner identification

Technical Stack

Machine Learning:

  • PyTorch for deep learning models
  • LightFM for hybrid recommendations
  • Vowpal Wabbit for contextual bandits
  • MLflow for experiment tracking
  • Feast for feature store

Data Infrastructure:

  • Apache Kafka for event streaming (2.5B events/day)
  • Redis Cluster for feature store (50M profiles)
  • DynamoDB for profile storage
  • Snowflake for analytics data warehouse
  • AWS S3 + Athena for data lake

Application Services:

  • Go for high-performance API
  • Python for ML inference
  • TorchServe for model serving
  • Node.js for real-time websockets
  • GraphQL for frontend API

Deployment:

  • Kubernetes on AWS EKS
  • Istio service mesh
  • ArgoCD for GitOps
  • Prometheus + Grafana monitoring
  • DataDog for observability

Business Impact

Customer Satisfaction

  • Net Promoter Score: +12 points improvement
  • Customer satisfaction: 4.2 → 4.7 stars
  • Return rate: Reduced by 28%
  • Customer service tickets: 23% reduction

Competitive Advantage

  • Market share growth: +3.2% in key demographics
  • Customer acquisition cost: Reduced by 31%
  • Brand perception: "Most personalized" in category

Sustainability

  • Overstock reduction: 42% less excess inventory
  • Return shipping: 28% reduction in reverse logistics
  • Targeted marketing: 67% reduction in email waste

Ongoing Innovation

Post-launch enhancements:

  • Social commerce: Instagram/TikTok shopping integration
  • Voice commerce: Alexa/Google Assistant personalization
  • Metaverse readiness: Virtual store personalization
  • Sustainability preferences: Eco-conscious product recommendations
  • Influencer matching: Connect customers with relevant influencers
  • Live shopping events: Personalized live stream experiences

ROI Summary

Year 1 Financial Impact:

  • Revenue increase: $127M
  • Cost savings: $24M (reduced discounting + operational efficiency)
  • Total benefit: $151M
  • Investment: $12M (development + infrastructure)
  • Net ROI: 1,158%
  • Payback period: 3.6 months

This personalization engine has become the competitive moat for the retailer, enabling them to compete effectively with tech-native brands while maintaining premium positioning.